三角函数内容规律 ~_sWmt
I/?s+@=?
三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在. MeC+/^}G;
Jmdi)'x;c
1、三角函数本质: +D`R7Lk
!Af~0NXJ
三角函数的本质来源于定义 T>73rv8g
<I9)UIA4
sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y。 T(4+Kx
@r[\:#V
深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导 U357e H
K!i -"\EK
sin(A+B) = sinAcosB+cosAsinB 为例: ywq6%'b!m
*E3q=Yn
推导: =-&5')Wxe
4?*^Zbq~
首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。 ?/ mrE5|v
e8Qfu\L}:o
A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β)) ~(o}1c
uEGUS>L
OA'=OA=OB=OD=1,D(1,0) &iIzaMG
bw6Ujf&
∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 3oF~AP
r2/,Saqv
和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2) ;rl$1ejfh
;f+hNHv
[1] .=(S0J
{N5~zS
两角和公式 hJu,LV-
:Y0wure5
sin(A+B) = sinAcosB+cosAsinB 6?dC6N28D
&g#'s4<j
sin(A-B) = sinAcosB-cosAsinB 44f,k
FzY3*oi+G
cos(A+B) = cosAcosB-sinAsinB yB_m8rjOH
xJ}@1WqN
cos(A-B) = cosAcosB+sinAsinB ZwtQ+9VgR
V% ,xP7?
tan(A+B) = (tanA+tanB)/(1-tanAtanB) 2gu<k.v
M.PAJ1$g>
tan(A-B) = (tanA-tanB)/(1+tanAtanB) $a#R
j!.hr8UbH
cot(A+B) = (cotAcotB-1)/(cotB+cotA) R;PQBx3
ryIUb B
cot(A-B) = (cotAcotB+1)/(cotB-cotA) $+GUlO
@
y'U`}jD}
倍角公式 4z >VI
^
K[hQB*z
Sin2A=2SinA•CosA y> xOw[|
-q qLzG
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 eimw BAR
0eE4niqK*
tan2A=2tanA/(1-tanA^2) N+Zj
vYA"]I
(注:SinA^2 是sinA的平方 sin2(A) ) F7aQ;5u"W
knjlS1#,
三倍角公式 R<p?Y9X"
^~{=l`Vw
/I{ak{c
(-awJjZ0
sin3α=4sinα·sin(π/3+α)sin(π/3-α) Mq=c
WV
EsI'?K
cos3α=4cosα·cos(π/3+α)cos(π/3-α) A8R`"s`Y
jTR ((i
tan3a = tan a · tan(π/3+a)· tan(π/3-a) K
#\G8sY
V!-[<H"Mb
三倍角公式推导 C9O$6y
WS? R[R
sin3a Rs+t6 C
^f%1Je%
=sin(2a+a) )0=hOoJU
[9@sw_A5
=sin2acosa+cos2asina z$+?Isbf
Ni9Z7"zB?C
=2sina(1-sin²a)+(1-2sin²a)sina D6;A~,K
^MvkXT
=3sina-4sin³a E3yjfA
eP1 7-
cos3a HR| P\
=.X6Nyy
=cos(2a+a) gvnuvw3pd
hik{W
=cos2acosa-sin2asina 'S
^W@
7c<FoQ"+A
=(2cos²a-1)cosa-2(1-sin²a)cosa ^Vs%k3
Q2y.|?1:i
=4cos³a-3cosa _g):}XX>H
UA%
\L
sin3a=3sina-4sin³a .SeUbP5~^
f`TG|"#'D
=4sina(3/4-sin²a) ?i>H$M"
/6#l~ee
=4sina[(√3/2)²-sin²a] Jt3^H
,Ue0|-n
=4sina(sin²60°-sin²a) Z0`4Q1
^ai}lRSy
=4sina(sin60°+sina)(sin60°-sina) gFt
NYZ4U`Rp
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] g;=isC
XQQ!!`Ni
=4sinasin(60°+a)sin(60°-a) AOl=UL<w
FprtN
cos3a=4cos³a-3cosa )zKuVV?.*
Cb<n
=4cosa(cos²a-3/4) sX^& |